Low Cycle Fatigue Behavior of Concrete with Recycled Concrete Aggregates

نویسنده

  • Paul Mark Gordon
چکیده

A comparison of concrete containing recycled concrete coarse aggregates and natural coarse aggregates subjected to high strain, low cycle compressive fatigue is presented. Using a strain based feedback control loop, concrete cylinders are compressed at 15µε/s to a specified strain then unloaded to zero stress for 10 cycles. After cycling, all samples are loaded to a strain of 0.008. Direct concrete material variables are the water to cement (w/c) ratio, taken as 0.60, 0.45, and 0.39, and percent coarse recycled concrete aggregate content, varied from 0 to 100%. The primary testing variable is the specified unloading strain. Unloading strains include 60, 75, 90, 100, and 120 percent of the strain at peak stress. Ten batches of concrete were made, generating a total of 224 samples for testing. Findings confirm previous research showing a reduction in strength with increasing recycled concrete coarse aggregate content, an equivalent concrete with only 25% replacement of natural coarse aggregates and an equivalent strength concrete with a decrease in the w/c ratio and 100% recycled concrete coarse aggregates. Fatigue testing indicates that each cycle's maximum stress remains unchanged, but the stiffness degrades more rapidly with increasing recycled aggregate content and a constant w/c ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating properties of fresh and hardened self-compacting concrete made of recycled aggregates

Self-compacting concrete is a new high performance concrete with high ductility and segregation resistance. In recent years, construction material manufacturers have focused their attention on lightweight concrete and have strived to use lightweight concrete, if possible, in load-bearing parts of buildings. Concrete with both self-compacting and lightweight properties is favourable in this cont...

متن کامل

In situ strength assessment of concrete using recycled aggregates by means of small diameter cores.

By increasing the demolition of old concrete structures and the interest of civil industries to consume cheaper materials, using Recycled Concrete Aggregate (RCA) can cause environmental protection and decrease the construction costs. On the other hand, the high potential of Recycled Aggregate Concrete (RAC) in concrete industry was established by extensive experimental researches were performe...

متن کامل

Performance of High-strength Concrete Made with Recycled Ceramic Aggregates

Recent scientific concerns to achieve sustainability in construction have suggested the implementation of using recycled aggregate in concrete because it has the potential to reduce the demand for extraction of natural raw materials and decrease the volume of wastes landfilled. In this respect, this study aims to investigate the suitability of using ceramic tile (CT) and ceramic sanitary (CS) w...

متن کامل

A study on strength and durability of self-compacting concretes made of recycled aggregates

Given the development of construction industry and design and implementation of high rise buildings with complex sections and various geometrical forms, the use of self-compacting concretes has received the attention of construction engineers and provided great advantages. Due to the increasing air pollution in cities, governments encounter the important issue of repelling the pollutants in whi...

متن کامل

Rheological properties of self-consolidating concrete made by crushed waste tile aggregates

In recent decades, the use of self-consolidating concrete has become widespread. Hence, recognizing the various properties of self-consolidating concrete are essential. In this study, several mixture designs have been tested and final mixture design of crushed tile aggregates which were replaced by 0%, 25 %, 50%, and 100% volume percentage of natural aggregates were conducted. To evaluate fresh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011